Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 739, 915, 644, 999 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 739, 915, 644, 999 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 739, 915, 644, 999 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 739, 915, 644, 999 is 1.
HCF(739, 915, 644, 999) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 739, 915, 644, 999 is 1.
Step 1: Since 915 > 739, we apply the division lemma to 915 and 739, to get
915 = 739 x 1 + 176
Step 2: Since the reminder 739 ≠ 0, we apply division lemma to 176 and 739, to get
739 = 176 x 4 + 35
Step 3: We consider the new divisor 176 and the new remainder 35, and apply the division lemma to get
176 = 35 x 5 + 1
We consider the new divisor 35 and the new remainder 1, and apply the division lemma to get
35 = 1 x 35 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 739 and 915 is 1
Notice that 1 = HCF(35,1) = HCF(176,35) = HCF(739,176) = HCF(915,739) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 644 > 1, we apply the division lemma to 644 and 1, to get
644 = 1 x 644 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 644 is 1
Notice that 1 = HCF(644,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 999 > 1, we apply the division lemma to 999 and 1, to get
999 = 1 x 999 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 999 is 1
Notice that 1 = HCF(999,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 739, 915, 644, 999?
Answer: HCF of 739, 915, 644, 999 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 739, 915, 644, 999 using Euclid's Algorithm?
Answer: For arbitrary numbers 739, 915, 644, 999 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.