Highest Common Factor of 741, 879, 936 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 741, 879, 936 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 741, 879, 936 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 741, 879, 936 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 741, 879, 936 is 3.

HCF(741, 879, 936) = 3

HCF of 741, 879, 936 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 741, 879, 936 is 3.

Highest Common Factor of 741,879,936 using Euclid's algorithm

Highest Common Factor of 741,879,936 is 3

Step 1: Since 879 > 741, we apply the division lemma to 879 and 741, to get

879 = 741 x 1 + 138

Step 2: Since the reminder 741 ≠ 0, we apply division lemma to 138 and 741, to get

741 = 138 x 5 + 51

Step 3: We consider the new divisor 138 and the new remainder 51, and apply the division lemma to get

138 = 51 x 2 + 36

We consider the new divisor 51 and the new remainder 36,and apply the division lemma to get

51 = 36 x 1 + 15

We consider the new divisor 36 and the new remainder 15,and apply the division lemma to get

36 = 15 x 2 + 6

We consider the new divisor 15 and the new remainder 6,and apply the division lemma to get

15 = 6 x 2 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 741 and 879 is 3

Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(36,15) = HCF(51,36) = HCF(138,51) = HCF(741,138) = HCF(879,741) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 936 > 3, we apply the division lemma to 936 and 3, to get

936 = 3 x 312 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 936 is 3

Notice that 3 = HCF(936,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 741, 879, 936 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 741, 879, 936?

Answer: HCF of 741, 879, 936 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 741, 879, 936 using Euclid's Algorithm?

Answer: For arbitrary numbers 741, 879, 936 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.