Highest Common Factor of 7439, 9879 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7439, 9879 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7439, 9879 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7439, 9879 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7439, 9879 is 1.

HCF(7439, 9879) = 1

HCF of 7439, 9879 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7439, 9879 is 1.

Highest Common Factor of 7439,9879 using Euclid's algorithm

Highest Common Factor of 7439,9879 is 1

Step 1: Since 9879 > 7439, we apply the division lemma to 9879 and 7439, to get

9879 = 7439 x 1 + 2440

Step 2: Since the reminder 7439 ≠ 0, we apply division lemma to 2440 and 7439, to get

7439 = 2440 x 3 + 119

Step 3: We consider the new divisor 2440 and the new remainder 119, and apply the division lemma to get

2440 = 119 x 20 + 60

We consider the new divisor 119 and the new remainder 60,and apply the division lemma to get

119 = 60 x 1 + 59

We consider the new divisor 60 and the new remainder 59,and apply the division lemma to get

60 = 59 x 1 + 1

We consider the new divisor 59 and the new remainder 1,and apply the division lemma to get

59 = 1 x 59 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7439 and 9879 is 1

Notice that 1 = HCF(59,1) = HCF(60,59) = HCF(119,60) = HCF(2440,119) = HCF(7439,2440) = HCF(9879,7439) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7439, 9879 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7439, 9879?

Answer: HCF of 7439, 9879 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7439, 9879 using Euclid's Algorithm?

Answer: For arbitrary numbers 7439, 9879 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.