Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 744, 80009 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 744, 80009 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 744, 80009 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 744, 80009 is 1.
HCF(744, 80009) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 744, 80009 is 1.
Step 1: Since 80009 > 744, we apply the division lemma to 80009 and 744, to get
80009 = 744 x 107 + 401
Step 2: Since the reminder 744 ≠ 0, we apply division lemma to 401 and 744, to get
744 = 401 x 1 + 343
Step 3: We consider the new divisor 401 and the new remainder 343, and apply the division lemma to get
401 = 343 x 1 + 58
We consider the new divisor 343 and the new remainder 58,and apply the division lemma to get
343 = 58 x 5 + 53
We consider the new divisor 58 and the new remainder 53,and apply the division lemma to get
58 = 53 x 1 + 5
We consider the new divisor 53 and the new remainder 5,and apply the division lemma to get
53 = 5 x 10 + 3
We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get
5 = 3 x 1 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 744 and 80009 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(53,5) = HCF(58,53) = HCF(343,58) = HCF(401,343) = HCF(744,401) = HCF(80009,744) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 744, 80009?
Answer: HCF of 744, 80009 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 744, 80009 using Euclid's Algorithm?
Answer: For arbitrary numbers 744, 80009 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.