Highest Common Factor of 749, 798, 18 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 749, 798, 18 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 749, 798, 18 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 749, 798, 18 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 749, 798, 18 is 1.

HCF(749, 798, 18) = 1

HCF of 749, 798, 18 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 749, 798, 18 is 1.

Highest Common Factor of 749,798,18 using Euclid's algorithm

Highest Common Factor of 749,798,18 is 1

Step 1: Since 798 > 749, we apply the division lemma to 798 and 749, to get

798 = 749 x 1 + 49

Step 2: Since the reminder 749 ≠ 0, we apply division lemma to 49 and 749, to get

749 = 49 x 15 + 14

Step 3: We consider the new divisor 49 and the new remainder 14, and apply the division lemma to get

49 = 14 x 3 + 7

We consider the new divisor 14 and the new remainder 7, and apply the division lemma to get

14 = 7 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 749 and 798 is 7

Notice that 7 = HCF(14,7) = HCF(49,14) = HCF(749,49) = HCF(798,749) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 18 > 7, we apply the division lemma to 18 and 7, to get

18 = 7 x 2 + 4

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 4 and 7, to get

7 = 4 x 1 + 3

Step 3: We consider the new divisor 4 and the new remainder 3, and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 18 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(18,7) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 749, 798, 18 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 749, 798, 18?

Answer: HCF of 749, 798, 18 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 749, 798, 18 using Euclid's Algorithm?

Answer: For arbitrary numbers 749, 798, 18 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.