Highest Common Factor of 750, 961, 305, 11 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 750, 961, 305, 11 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 750, 961, 305, 11 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 750, 961, 305, 11 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 750, 961, 305, 11 is 1.

HCF(750, 961, 305, 11) = 1

HCF of 750, 961, 305, 11 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 750, 961, 305, 11 is 1.

Highest Common Factor of 750,961,305,11 using Euclid's algorithm

Highest Common Factor of 750,961,305,11 is 1

Step 1: Since 961 > 750, we apply the division lemma to 961 and 750, to get

961 = 750 x 1 + 211

Step 2: Since the reminder 750 ≠ 0, we apply division lemma to 211 and 750, to get

750 = 211 x 3 + 117

Step 3: We consider the new divisor 211 and the new remainder 117, and apply the division lemma to get

211 = 117 x 1 + 94

We consider the new divisor 117 and the new remainder 94,and apply the division lemma to get

117 = 94 x 1 + 23

We consider the new divisor 94 and the new remainder 23,and apply the division lemma to get

94 = 23 x 4 + 2

We consider the new divisor 23 and the new remainder 2,and apply the division lemma to get

23 = 2 x 11 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 750 and 961 is 1

Notice that 1 = HCF(2,1) = HCF(23,2) = HCF(94,23) = HCF(117,94) = HCF(211,117) = HCF(750,211) = HCF(961,750) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 305 > 1, we apply the division lemma to 305 and 1, to get

305 = 1 x 305 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 305 is 1

Notice that 1 = HCF(305,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 11 > 1, we apply the division lemma to 11 and 1, to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 11 is 1

Notice that 1 = HCF(11,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 750, 961, 305, 11 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 750, 961, 305, 11?

Answer: HCF of 750, 961, 305, 11 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 750, 961, 305, 11 using Euclid's Algorithm?

Answer: For arbitrary numbers 750, 961, 305, 11 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.