Highest Common Factor of 751, 87334 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 751, 87334 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 751, 87334 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 751, 87334 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 751, 87334 is 1.

HCF(751, 87334) = 1

HCF of 751, 87334 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 751, 87334 is 1.

Highest Common Factor of 751,87334 using Euclid's algorithm

Highest Common Factor of 751,87334 is 1

Step 1: Since 87334 > 751, we apply the division lemma to 87334 and 751, to get

87334 = 751 x 116 + 218

Step 2: Since the reminder 751 ≠ 0, we apply division lemma to 218 and 751, to get

751 = 218 x 3 + 97

Step 3: We consider the new divisor 218 and the new remainder 97, and apply the division lemma to get

218 = 97 x 2 + 24

We consider the new divisor 97 and the new remainder 24,and apply the division lemma to get

97 = 24 x 4 + 1

We consider the new divisor 24 and the new remainder 1,and apply the division lemma to get

24 = 1 x 24 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 751 and 87334 is 1

Notice that 1 = HCF(24,1) = HCF(97,24) = HCF(218,97) = HCF(751,218) = HCF(87334,751) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 751, 87334 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 751, 87334?

Answer: HCF of 751, 87334 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 751, 87334 using Euclid's Algorithm?

Answer: For arbitrary numbers 751, 87334 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.