Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7527, 3864 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 7527, 3864 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 7527, 3864 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 7527, 3864 is 3.
HCF(7527, 3864) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 7527, 3864 is 3.
Step 1: Since 7527 > 3864, we apply the division lemma to 7527 and 3864, to get
7527 = 3864 x 1 + 3663
Step 2: Since the reminder 3864 ≠ 0, we apply division lemma to 3663 and 3864, to get
3864 = 3663 x 1 + 201
Step 3: We consider the new divisor 3663 and the new remainder 201, and apply the division lemma to get
3663 = 201 x 18 + 45
We consider the new divisor 201 and the new remainder 45,and apply the division lemma to get
201 = 45 x 4 + 21
We consider the new divisor 45 and the new remainder 21,and apply the division lemma to get
45 = 21 x 2 + 3
We consider the new divisor 21 and the new remainder 3,and apply the division lemma to get
21 = 3 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 7527 and 3864 is 3
Notice that 3 = HCF(21,3) = HCF(45,21) = HCF(201,45) = HCF(3663,201) = HCF(3864,3663) = HCF(7527,3864) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 7527, 3864?
Answer: HCF of 7527, 3864 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 7527, 3864 using Euclid's Algorithm?
Answer: For arbitrary numbers 7527, 3864 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.