Highest Common Factor of 753, 579, 608, 576 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 753, 579, 608, 576 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 753, 579, 608, 576 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 753, 579, 608, 576 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 753, 579, 608, 576 is 1.

HCF(753, 579, 608, 576) = 1

HCF of 753, 579, 608, 576 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 753, 579, 608, 576 is 1.

Highest Common Factor of 753,579,608,576 using Euclid's algorithm

Highest Common Factor of 753,579,608,576 is 1

Step 1: Since 753 > 579, we apply the division lemma to 753 and 579, to get

753 = 579 x 1 + 174

Step 2: Since the reminder 579 ≠ 0, we apply division lemma to 174 and 579, to get

579 = 174 x 3 + 57

Step 3: We consider the new divisor 174 and the new remainder 57, and apply the division lemma to get

174 = 57 x 3 + 3

We consider the new divisor 57 and the new remainder 3, and apply the division lemma to get

57 = 3 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 753 and 579 is 3

Notice that 3 = HCF(57,3) = HCF(174,57) = HCF(579,174) = HCF(753,579) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 608 > 3, we apply the division lemma to 608 and 3, to get

608 = 3 x 202 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 608 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(608,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 576 > 1, we apply the division lemma to 576 and 1, to get

576 = 1 x 576 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 576 is 1

Notice that 1 = HCF(576,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 753, 579, 608, 576 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 753, 579, 608, 576?

Answer: HCF of 753, 579, 608, 576 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 753, 579, 608, 576 using Euclid's Algorithm?

Answer: For arbitrary numbers 753, 579, 608, 576 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.