Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 753, 625, 190 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 753, 625, 190 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 753, 625, 190 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 753, 625, 190 is 1.
HCF(753, 625, 190) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 753, 625, 190 is 1.
Step 1: Since 753 > 625, we apply the division lemma to 753 and 625, to get
753 = 625 x 1 + 128
Step 2: Since the reminder 625 ≠ 0, we apply division lemma to 128 and 625, to get
625 = 128 x 4 + 113
Step 3: We consider the new divisor 128 and the new remainder 113, and apply the division lemma to get
128 = 113 x 1 + 15
We consider the new divisor 113 and the new remainder 15,and apply the division lemma to get
113 = 15 x 7 + 8
We consider the new divisor 15 and the new remainder 8,and apply the division lemma to get
15 = 8 x 1 + 7
We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get
8 = 7 x 1 + 1
We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get
7 = 1 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 753 and 625 is 1
Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(15,8) = HCF(113,15) = HCF(128,113) = HCF(625,128) = HCF(753,625) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 190 > 1, we apply the division lemma to 190 and 1, to get
190 = 1 x 190 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 190 is 1
Notice that 1 = HCF(190,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 753, 625, 190?
Answer: HCF of 753, 625, 190 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 753, 625, 190 using Euclid's Algorithm?
Answer: For arbitrary numbers 753, 625, 190 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.