Highest Common Factor of 755, 401, 167 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 755, 401, 167 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 755, 401, 167 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 755, 401, 167 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 755, 401, 167 is 1.

HCF(755, 401, 167) = 1

HCF of 755, 401, 167 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 755, 401, 167 is 1.

Highest Common Factor of 755,401,167 using Euclid's algorithm

Highest Common Factor of 755,401,167 is 1

Step 1: Since 755 > 401, we apply the division lemma to 755 and 401, to get

755 = 401 x 1 + 354

Step 2: Since the reminder 401 ≠ 0, we apply division lemma to 354 and 401, to get

401 = 354 x 1 + 47

Step 3: We consider the new divisor 354 and the new remainder 47, and apply the division lemma to get

354 = 47 x 7 + 25

We consider the new divisor 47 and the new remainder 25,and apply the division lemma to get

47 = 25 x 1 + 22

We consider the new divisor 25 and the new remainder 22,and apply the division lemma to get

25 = 22 x 1 + 3

We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get

22 = 3 x 7 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 755 and 401 is 1

Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(25,22) = HCF(47,25) = HCF(354,47) = HCF(401,354) = HCF(755,401) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 167 > 1, we apply the division lemma to 167 and 1, to get

167 = 1 x 167 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 167 is 1

Notice that 1 = HCF(167,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 755, 401, 167 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 755, 401, 167?

Answer: HCF of 755, 401, 167 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 755, 401, 167 using Euclid's Algorithm?

Answer: For arbitrary numbers 755, 401, 167 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.