Highest Common Factor of 755, 430, 437, 791 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 755, 430, 437, 791 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 755, 430, 437, 791 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 755, 430, 437, 791 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 755, 430, 437, 791 is 1.

HCF(755, 430, 437, 791) = 1

HCF of 755, 430, 437, 791 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 755, 430, 437, 791 is 1.

Highest Common Factor of 755,430,437,791 using Euclid's algorithm

Highest Common Factor of 755,430,437,791 is 1

Step 1: Since 755 > 430, we apply the division lemma to 755 and 430, to get

755 = 430 x 1 + 325

Step 2: Since the reminder 430 ≠ 0, we apply division lemma to 325 and 430, to get

430 = 325 x 1 + 105

Step 3: We consider the new divisor 325 and the new remainder 105, and apply the division lemma to get

325 = 105 x 3 + 10

We consider the new divisor 105 and the new remainder 10,and apply the division lemma to get

105 = 10 x 10 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 755 and 430 is 5

Notice that 5 = HCF(10,5) = HCF(105,10) = HCF(325,105) = HCF(430,325) = HCF(755,430) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 437 > 5, we apply the division lemma to 437 and 5, to get

437 = 5 x 87 + 2

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 2 and 5, to get

5 = 2 x 2 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 437 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(437,5) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 791 > 1, we apply the division lemma to 791 and 1, to get

791 = 1 x 791 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 791 is 1

Notice that 1 = HCF(791,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 755, 430, 437, 791 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 755, 430, 437, 791?

Answer: HCF of 755, 430, 437, 791 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 755, 430, 437, 791 using Euclid's Algorithm?

Answer: For arbitrary numbers 755, 430, 437, 791 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.