Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 755, 436 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 755, 436 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 755, 436 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 755, 436 is 1.
HCF(755, 436) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 755, 436 is 1.
Step 1: Since 755 > 436, we apply the division lemma to 755 and 436, to get
755 = 436 x 1 + 319
Step 2: Since the reminder 436 ≠ 0, we apply division lemma to 319 and 436, to get
436 = 319 x 1 + 117
Step 3: We consider the new divisor 319 and the new remainder 117, and apply the division lemma to get
319 = 117 x 2 + 85
We consider the new divisor 117 and the new remainder 85,and apply the division lemma to get
117 = 85 x 1 + 32
We consider the new divisor 85 and the new remainder 32,and apply the division lemma to get
85 = 32 x 2 + 21
We consider the new divisor 32 and the new remainder 21,and apply the division lemma to get
32 = 21 x 1 + 11
We consider the new divisor 21 and the new remainder 11,and apply the division lemma to get
21 = 11 x 1 + 10
We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get
11 = 10 x 1 + 1
We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get
10 = 1 x 10 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 755 and 436 is 1
Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(21,11) = HCF(32,21) = HCF(85,32) = HCF(117,85) = HCF(319,117) = HCF(436,319) = HCF(755,436) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 755, 436?
Answer: HCF of 755, 436 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 755, 436 using Euclid's Algorithm?
Answer: For arbitrary numbers 755, 436 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.