Highest Common Factor of 755, 604, 94 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 755, 604, 94 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 755, 604, 94 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 755, 604, 94 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 755, 604, 94 is 1.

HCF(755, 604, 94) = 1

HCF of 755, 604, 94 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 755, 604, 94 is 1.

Highest Common Factor of 755,604,94 using Euclid's algorithm

Highest Common Factor of 755,604,94 is 1

Step 1: Since 755 > 604, we apply the division lemma to 755 and 604, to get

755 = 604 x 1 + 151

Step 2: Since the reminder 604 ≠ 0, we apply division lemma to 151 and 604, to get

604 = 151 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 151, the HCF of 755 and 604 is 151

Notice that 151 = HCF(604,151) = HCF(755,604) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 151 > 94, we apply the division lemma to 151 and 94, to get

151 = 94 x 1 + 57

Step 2: Since the reminder 94 ≠ 0, we apply division lemma to 57 and 94, to get

94 = 57 x 1 + 37

Step 3: We consider the new divisor 57 and the new remainder 37, and apply the division lemma to get

57 = 37 x 1 + 20

We consider the new divisor 37 and the new remainder 20,and apply the division lemma to get

37 = 20 x 1 + 17

We consider the new divisor 20 and the new remainder 17,and apply the division lemma to get

20 = 17 x 1 + 3

We consider the new divisor 17 and the new remainder 3,and apply the division lemma to get

17 = 3 x 5 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 151 and 94 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(17,3) = HCF(20,17) = HCF(37,20) = HCF(57,37) = HCF(94,57) = HCF(151,94) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 755, 604, 94 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 755, 604, 94?

Answer: HCF of 755, 604, 94 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 755, 604, 94 using Euclid's Algorithm?

Answer: For arbitrary numbers 755, 604, 94 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.