Highest Common Factor of 757, 398, 13, 342 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 757, 398, 13, 342 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 757, 398, 13, 342 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 757, 398, 13, 342 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 757, 398, 13, 342 is 1.

HCF(757, 398, 13, 342) = 1

HCF of 757, 398, 13, 342 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 757, 398, 13, 342 is 1.

Highest Common Factor of 757,398,13,342 using Euclid's algorithm

Highest Common Factor of 757,398,13,342 is 1

Step 1: Since 757 > 398, we apply the division lemma to 757 and 398, to get

757 = 398 x 1 + 359

Step 2: Since the reminder 398 ≠ 0, we apply division lemma to 359 and 398, to get

398 = 359 x 1 + 39

Step 3: We consider the new divisor 359 and the new remainder 39, and apply the division lemma to get

359 = 39 x 9 + 8

We consider the new divisor 39 and the new remainder 8,and apply the division lemma to get

39 = 8 x 4 + 7

We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 757 and 398 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(39,8) = HCF(359,39) = HCF(398,359) = HCF(757,398) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 13 > 1, we apply the division lemma to 13 and 1, to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 13 is 1

Notice that 1 = HCF(13,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 342 > 1, we apply the division lemma to 342 and 1, to get

342 = 1 x 342 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 342 is 1

Notice that 1 = HCF(342,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 757, 398, 13, 342 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 757, 398, 13, 342?

Answer: HCF of 757, 398, 13, 342 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 757, 398, 13, 342 using Euclid's Algorithm?

Answer: For arbitrary numbers 757, 398, 13, 342 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.