Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 758, 962, 853, 11 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 758, 962, 853, 11 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 758, 962, 853, 11 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 758, 962, 853, 11 is 1.
HCF(758, 962, 853, 11) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 758, 962, 853, 11 is 1.
Step 1: Since 962 > 758, we apply the division lemma to 962 and 758, to get
962 = 758 x 1 + 204
Step 2: Since the reminder 758 ≠ 0, we apply division lemma to 204 and 758, to get
758 = 204 x 3 + 146
Step 3: We consider the new divisor 204 and the new remainder 146, and apply the division lemma to get
204 = 146 x 1 + 58
We consider the new divisor 146 and the new remainder 58,and apply the division lemma to get
146 = 58 x 2 + 30
We consider the new divisor 58 and the new remainder 30,and apply the division lemma to get
58 = 30 x 1 + 28
We consider the new divisor 30 and the new remainder 28,and apply the division lemma to get
30 = 28 x 1 + 2
We consider the new divisor 28 and the new remainder 2,and apply the division lemma to get
28 = 2 x 14 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 758 and 962 is 2
Notice that 2 = HCF(28,2) = HCF(30,28) = HCF(58,30) = HCF(146,58) = HCF(204,146) = HCF(758,204) = HCF(962,758) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 853 > 2, we apply the division lemma to 853 and 2, to get
853 = 2 x 426 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 853 is 1
Notice that 1 = HCF(2,1) = HCF(853,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 11 > 1, we apply the division lemma to 11 and 1, to get
11 = 1 x 11 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 11 is 1
Notice that 1 = HCF(11,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 758, 962, 853, 11?
Answer: HCF of 758, 962, 853, 11 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 758, 962, 853, 11 using Euclid's Algorithm?
Answer: For arbitrary numbers 758, 962, 853, 11 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.