Highest Common Factor of 760, 4143 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 760, 4143 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 760, 4143 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 760, 4143 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 760, 4143 is 1.

HCF(760, 4143) = 1

HCF of 760, 4143 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 760, 4143 is 1.

Highest Common Factor of 760,4143 using Euclid's algorithm

Highest Common Factor of 760,4143 is 1

Step 1: Since 4143 > 760, we apply the division lemma to 4143 and 760, to get

4143 = 760 x 5 + 343

Step 2: Since the reminder 760 ≠ 0, we apply division lemma to 343 and 760, to get

760 = 343 x 2 + 74

Step 3: We consider the new divisor 343 and the new remainder 74, and apply the division lemma to get

343 = 74 x 4 + 47

We consider the new divisor 74 and the new remainder 47,and apply the division lemma to get

74 = 47 x 1 + 27

We consider the new divisor 47 and the new remainder 27,and apply the division lemma to get

47 = 27 x 1 + 20

We consider the new divisor 27 and the new remainder 20,and apply the division lemma to get

27 = 20 x 1 + 7

We consider the new divisor 20 and the new remainder 7,and apply the division lemma to get

20 = 7 x 2 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 760 and 4143 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(20,7) = HCF(27,20) = HCF(47,27) = HCF(74,47) = HCF(343,74) = HCF(760,343) = HCF(4143,760) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 760, 4143 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 760, 4143?

Answer: HCF of 760, 4143 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 760, 4143 using Euclid's Algorithm?

Answer: For arbitrary numbers 760, 4143 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.