Highest Common Factor of 760, 418, 201 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 760, 418, 201 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 760, 418, 201 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 760, 418, 201 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 760, 418, 201 is 1.

HCF(760, 418, 201) = 1

HCF of 760, 418, 201 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 760, 418, 201 is 1.

Highest Common Factor of 760,418,201 using Euclid's algorithm

Highest Common Factor of 760,418,201 is 1

Step 1: Since 760 > 418, we apply the division lemma to 760 and 418, to get

760 = 418 x 1 + 342

Step 2: Since the reminder 418 ≠ 0, we apply division lemma to 342 and 418, to get

418 = 342 x 1 + 76

Step 3: We consider the new divisor 342 and the new remainder 76, and apply the division lemma to get

342 = 76 x 4 + 38

We consider the new divisor 76 and the new remainder 38, and apply the division lemma to get

76 = 38 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 38, the HCF of 760 and 418 is 38

Notice that 38 = HCF(76,38) = HCF(342,76) = HCF(418,342) = HCF(760,418) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 201 > 38, we apply the division lemma to 201 and 38, to get

201 = 38 x 5 + 11

Step 2: Since the reminder 38 ≠ 0, we apply division lemma to 11 and 38, to get

38 = 11 x 3 + 5

Step 3: We consider the new divisor 11 and the new remainder 5, and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1, and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 38 and 201 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(38,11) = HCF(201,38) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 760, 418, 201 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 760, 418, 201?

Answer: HCF of 760, 418, 201 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 760, 418, 201 using Euclid's Algorithm?

Answer: For arbitrary numbers 760, 418, 201 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.