Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 762, 520, 78, 929 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 762, 520, 78, 929 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 762, 520, 78, 929 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 762, 520, 78, 929 is 1.
HCF(762, 520, 78, 929) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 762, 520, 78, 929 is 1.
Step 1: Since 762 > 520, we apply the division lemma to 762 and 520, to get
762 = 520 x 1 + 242
Step 2: Since the reminder 520 ≠ 0, we apply division lemma to 242 and 520, to get
520 = 242 x 2 + 36
Step 3: We consider the new divisor 242 and the new remainder 36, and apply the division lemma to get
242 = 36 x 6 + 26
We consider the new divisor 36 and the new remainder 26,and apply the division lemma to get
36 = 26 x 1 + 10
We consider the new divisor 26 and the new remainder 10,and apply the division lemma to get
26 = 10 x 2 + 6
We consider the new divisor 10 and the new remainder 6,and apply the division lemma to get
10 = 6 x 1 + 4
We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get
6 = 4 x 1 + 2
We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get
4 = 2 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 762 and 520 is 2
Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(10,6) = HCF(26,10) = HCF(36,26) = HCF(242,36) = HCF(520,242) = HCF(762,520) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 78 > 2, we apply the division lemma to 78 and 2, to get
78 = 2 x 39 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 78 is 2
Notice that 2 = HCF(78,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 929 > 2, we apply the division lemma to 929 and 2, to get
929 = 2 x 464 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 929 is 1
Notice that 1 = HCF(2,1) = HCF(929,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 762, 520, 78, 929?
Answer: HCF of 762, 520, 78, 929 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 762, 520, 78, 929 using Euclid's Algorithm?
Answer: For arbitrary numbers 762, 520, 78, 929 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.