Highest Common Factor of 7629, 6547 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7629, 6547 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7629, 6547 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7629, 6547 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7629, 6547 is 1.

HCF(7629, 6547) = 1

HCF of 7629, 6547 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7629, 6547 is 1.

Highest Common Factor of 7629,6547 using Euclid's algorithm

Highest Common Factor of 7629,6547 is 1

Step 1: Since 7629 > 6547, we apply the division lemma to 7629 and 6547, to get

7629 = 6547 x 1 + 1082

Step 2: Since the reminder 6547 ≠ 0, we apply division lemma to 1082 and 6547, to get

6547 = 1082 x 6 + 55

Step 3: We consider the new divisor 1082 and the new remainder 55, and apply the division lemma to get

1082 = 55 x 19 + 37

We consider the new divisor 55 and the new remainder 37,and apply the division lemma to get

55 = 37 x 1 + 18

We consider the new divisor 37 and the new remainder 18,and apply the division lemma to get

37 = 18 x 2 + 1

We consider the new divisor 18 and the new remainder 1,and apply the division lemma to get

18 = 1 x 18 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7629 and 6547 is 1

Notice that 1 = HCF(18,1) = HCF(37,18) = HCF(55,37) = HCF(1082,55) = HCF(6547,1082) = HCF(7629,6547) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7629, 6547 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7629, 6547?

Answer: HCF of 7629, 6547 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7629, 6547 using Euclid's Algorithm?

Answer: For arbitrary numbers 7629, 6547 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.