Highest Common Factor of 765, 431, 179 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 765, 431, 179 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 765, 431, 179 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 765, 431, 179 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 765, 431, 179 is 1.

HCF(765, 431, 179) = 1

HCF of 765, 431, 179 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 765, 431, 179 is 1.

Highest Common Factor of 765,431,179 using Euclid's algorithm

Highest Common Factor of 765,431,179 is 1

Step 1: Since 765 > 431, we apply the division lemma to 765 and 431, to get

765 = 431 x 1 + 334

Step 2: Since the reminder 431 ≠ 0, we apply division lemma to 334 and 431, to get

431 = 334 x 1 + 97

Step 3: We consider the new divisor 334 and the new remainder 97, and apply the division lemma to get

334 = 97 x 3 + 43

We consider the new divisor 97 and the new remainder 43,and apply the division lemma to get

97 = 43 x 2 + 11

We consider the new divisor 43 and the new remainder 11,and apply the division lemma to get

43 = 11 x 3 + 10

We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get

11 = 10 x 1 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 765 and 431 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(43,11) = HCF(97,43) = HCF(334,97) = HCF(431,334) = HCF(765,431) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 179 > 1, we apply the division lemma to 179 and 1, to get

179 = 1 x 179 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 179 is 1

Notice that 1 = HCF(179,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 765, 431, 179 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 765, 431, 179?

Answer: HCF of 765, 431, 179 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 765, 431, 179 using Euclid's Algorithm?

Answer: For arbitrary numbers 765, 431, 179 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.