Highest Common Factor of 7682, 4722 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7682, 4722 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 7682, 4722 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7682, 4722 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7682, 4722 is 2.

HCF(7682, 4722) = 2

HCF of 7682, 4722 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7682, 4722 is 2.

Highest Common Factor of 7682,4722 using Euclid's algorithm

Highest Common Factor of 7682,4722 is 2

Step 1: Since 7682 > 4722, we apply the division lemma to 7682 and 4722, to get

7682 = 4722 x 1 + 2960

Step 2: Since the reminder 4722 ≠ 0, we apply division lemma to 2960 and 4722, to get

4722 = 2960 x 1 + 1762

Step 3: We consider the new divisor 2960 and the new remainder 1762, and apply the division lemma to get

2960 = 1762 x 1 + 1198

We consider the new divisor 1762 and the new remainder 1198,and apply the division lemma to get

1762 = 1198 x 1 + 564

We consider the new divisor 1198 and the new remainder 564,and apply the division lemma to get

1198 = 564 x 2 + 70

We consider the new divisor 564 and the new remainder 70,and apply the division lemma to get

564 = 70 x 8 + 4

We consider the new divisor 70 and the new remainder 4,and apply the division lemma to get

70 = 4 x 17 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 7682 and 4722 is 2

Notice that 2 = HCF(4,2) = HCF(70,4) = HCF(564,70) = HCF(1198,564) = HCF(1762,1198) = HCF(2960,1762) = HCF(4722,2960) = HCF(7682,4722) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7682, 4722 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7682, 4722?

Answer: HCF of 7682, 4722 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7682, 4722 using Euclid's Algorithm?

Answer: For arbitrary numbers 7682, 4722 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.