Highest Common Factor of 7699, 5239 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7699, 5239 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7699, 5239 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7699, 5239 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7699, 5239 is 1.

HCF(7699, 5239) = 1

HCF of 7699, 5239 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7699, 5239 is 1.

Highest Common Factor of 7699,5239 using Euclid's algorithm

Highest Common Factor of 7699,5239 is 1

Step 1: Since 7699 > 5239, we apply the division lemma to 7699 and 5239, to get

7699 = 5239 x 1 + 2460

Step 2: Since the reminder 5239 ≠ 0, we apply division lemma to 2460 and 5239, to get

5239 = 2460 x 2 + 319

Step 3: We consider the new divisor 2460 and the new remainder 319, and apply the division lemma to get

2460 = 319 x 7 + 227

We consider the new divisor 319 and the new remainder 227,and apply the division lemma to get

319 = 227 x 1 + 92

We consider the new divisor 227 and the new remainder 92,and apply the division lemma to get

227 = 92 x 2 + 43

We consider the new divisor 92 and the new remainder 43,and apply the division lemma to get

92 = 43 x 2 + 6

We consider the new divisor 43 and the new remainder 6,and apply the division lemma to get

43 = 6 x 7 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7699 and 5239 is 1

Notice that 1 = HCF(6,1) = HCF(43,6) = HCF(92,43) = HCF(227,92) = HCF(319,227) = HCF(2460,319) = HCF(5239,2460) = HCF(7699,5239) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7699, 5239 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7699, 5239?

Answer: HCF of 7699, 5239 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7699, 5239 using Euclid's Algorithm?

Answer: For arbitrary numbers 7699, 5239 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.