Highest Common Factor of 770, 546, 613 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 770, 546, 613 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 770, 546, 613 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 770, 546, 613 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 770, 546, 613 is 1.

HCF(770, 546, 613) = 1

HCF of 770, 546, 613 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 770, 546, 613 is 1.

Highest Common Factor of 770,546,613 using Euclid's algorithm

Highest Common Factor of 770,546,613 is 1

Step 1: Since 770 > 546, we apply the division lemma to 770 and 546, to get

770 = 546 x 1 + 224

Step 2: Since the reminder 546 ≠ 0, we apply division lemma to 224 and 546, to get

546 = 224 x 2 + 98

Step 3: We consider the new divisor 224 and the new remainder 98, and apply the division lemma to get

224 = 98 x 2 + 28

We consider the new divisor 98 and the new remainder 28,and apply the division lemma to get

98 = 28 x 3 + 14

We consider the new divisor 28 and the new remainder 14,and apply the division lemma to get

28 = 14 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 14, the HCF of 770 and 546 is 14

Notice that 14 = HCF(28,14) = HCF(98,28) = HCF(224,98) = HCF(546,224) = HCF(770,546) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 613 > 14, we apply the division lemma to 613 and 14, to get

613 = 14 x 43 + 11

Step 2: Since the reminder 14 ≠ 0, we apply division lemma to 11 and 14, to get

14 = 11 x 1 + 3

Step 3: We consider the new divisor 11 and the new remainder 3, and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 14 and 613 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(613,14) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 770, 546, 613 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 770, 546, 613?

Answer: HCF of 770, 546, 613 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 770, 546, 613 using Euclid's Algorithm?

Answer: For arbitrary numbers 770, 546, 613 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.