Highest Common Factor of 7700, 7220 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7700, 7220 i.e. 20 the largest integer that leaves a remainder zero for all numbers.

HCF of 7700, 7220 is 20 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7700, 7220 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7700, 7220 is 20.

HCF(7700, 7220) = 20

HCF of 7700, 7220 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7700, 7220 is 20.

Highest Common Factor of 7700,7220 using Euclid's algorithm

Highest Common Factor of 7700,7220 is 20

Step 1: Since 7700 > 7220, we apply the division lemma to 7700 and 7220, to get

7700 = 7220 x 1 + 480

Step 2: Since the reminder 7220 ≠ 0, we apply division lemma to 480 and 7220, to get

7220 = 480 x 15 + 20

Step 3: We consider the new divisor 480 and the new remainder 20, and apply the division lemma to get

480 = 20 x 24 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 20, the HCF of 7700 and 7220 is 20

Notice that 20 = HCF(480,20) = HCF(7220,480) = HCF(7700,7220) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7700, 7220 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7700, 7220?

Answer: HCF of 7700, 7220 is 20 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7700, 7220 using Euclid's Algorithm?

Answer: For arbitrary numbers 7700, 7220 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.