Highest Common Factor of 771, 706, 121, 552 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 771, 706, 121, 552 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 771, 706, 121, 552 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 771, 706, 121, 552 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 771, 706, 121, 552 is 1.

HCF(771, 706, 121, 552) = 1

HCF of 771, 706, 121, 552 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 771, 706, 121, 552 is 1.

Highest Common Factor of 771,706,121,552 using Euclid's algorithm

Highest Common Factor of 771,706,121,552 is 1

Step 1: Since 771 > 706, we apply the division lemma to 771 and 706, to get

771 = 706 x 1 + 65

Step 2: Since the reminder 706 ≠ 0, we apply division lemma to 65 and 706, to get

706 = 65 x 10 + 56

Step 3: We consider the new divisor 65 and the new remainder 56, and apply the division lemma to get

65 = 56 x 1 + 9

We consider the new divisor 56 and the new remainder 9,and apply the division lemma to get

56 = 9 x 6 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 771 and 706 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(56,9) = HCF(65,56) = HCF(706,65) = HCF(771,706) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 121 > 1, we apply the division lemma to 121 and 1, to get

121 = 1 x 121 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 121 is 1

Notice that 1 = HCF(121,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 552 > 1, we apply the division lemma to 552 and 1, to get

552 = 1 x 552 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 552 is 1

Notice that 1 = HCF(552,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 771, 706, 121, 552 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 771, 706, 121, 552?

Answer: HCF of 771, 706, 121, 552 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 771, 706, 121, 552 using Euclid's Algorithm?

Answer: For arbitrary numbers 771, 706, 121, 552 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.