Highest Common Factor of 772, 4519, 4645 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 772, 4519, 4645 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 772, 4519, 4645 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 772, 4519, 4645 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 772, 4519, 4645 is 1.

HCF(772, 4519, 4645) = 1

HCF of 772, 4519, 4645 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 772, 4519, 4645 is 1.

Highest Common Factor of 772,4519,4645 using Euclid's algorithm

Highest Common Factor of 772,4519,4645 is 1

Step 1: Since 4519 > 772, we apply the division lemma to 4519 and 772, to get

4519 = 772 x 5 + 659

Step 2: Since the reminder 772 ≠ 0, we apply division lemma to 659 and 772, to get

772 = 659 x 1 + 113

Step 3: We consider the new divisor 659 and the new remainder 113, and apply the division lemma to get

659 = 113 x 5 + 94

We consider the new divisor 113 and the new remainder 94,and apply the division lemma to get

113 = 94 x 1 + 19

We consider the new divisor 94 and the new remainder 19,and apply the division lemma to get

94 = 19 x 4 + 18

We consider the new divisor 19 and the new remainder 18,and apply the division lemma to get

19 = 18 x 1 + 1

We consider the new divisor 18 and the new remainder 1,and apply the division lemma to get

18 = 1 x 18 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 772 and 4519 is 1

Notice that 1 = HCF(18,1) = HCF(19,18) = HCF(94,19) = HCF(113,94) = HCF(659,113) = HCF(772,659) = HCF(4519,772) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 4645 > 1, we apply the division lemma to 4645 and 1, to get

4645 = 1 x 4645 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 4645 is 1

Notice that 1 = HCF(4645,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 772, 4519, 4645 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 772, 4519, 4645?

Answer: HCF of 772, 4519, 4645 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 772, 4519, 4645 using Euclid's Algorithm?

Answer: For arbitrary numbers 772, 4519, 4645 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.