Highest Common Factor of 773, 147, 117, 525 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 773, 147, 117, 525 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 773, 147, 117, 525 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 773, 147, 117, 525 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 773, 147, 117, 525 is 1.

HCF(773, 147, 117, 525) = 1

HCF of 773, 147, 117, 525 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 773, 147, 117, 525 is 1.

Highest Common Factor of 773,147,117,525 using Euclid's algorithm

Highest Common Factor of 773,147,117,525 is 1

Step 1: Since 773 > 147, we apply the division lemma to 773 and 147, to get

773 = 147 x 5 + 38

Step 2: Since the reminder 147 ≠ 0, we apply division lemma to 38 and 147, to get

147 = 38 x 3 + 33

Step 3: We consider the new divisor 38 and the new remainder 33, and apply the division lemma to get

38 = 33 x 1 + 5

We consider the new divisor 33 and the new remainder 5,and apply the division lemma to get

33 = 5 x 6 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 773 and 147 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(33,5) = HCF(38,33) = HCF(147,38) = HCF(773,147) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 117 > 1, we apply the division lemma to 117 and 1, to get

117 = 1 x 117 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 117 is 1

Notice that 1 = HCF(117,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 525 > 1, we apply the division lemma to 525 and 1, to get

525 = 1 x 525 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 525 is 1

Notice that 1 = HCF(525,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 773, 147, 117, 525 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 773, 147, 117, 525?

Answer: HCF of 773, 147, 117, 525 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 773, 147, 117, 525 using Euclid's Algorithm?

Answer: For arbitrary numbers 773, 147, 117, 525 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.