Highest Common Factor of 774, 936, 68 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 774, 936, 68 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 774, 936, 68 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 774, 936, 68 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 774, 936, 68 is 2.

HCF(774, 936, 68) = 2

HCF of 774, 936, 68 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 774, 936, 68 is 2.

Highest Common Factor of 774,936,68 using Euclid's algorithm

Highest Common Factor of 774,936,68 is 2

Step 1: Since 936 > 774, we apply the division lemma to 936 and 774, to get

936 = 774 x 1 + 162

Step 2: Since the reminder 774 ≠ 0, we apply division lemma to 162 and 774, to get

774 = 162 x 4 + 126

Step 3: We consider the new divisor 162 and the new remainder 126, and apply the division lemma to get

162 = 126 x 1 + 36

We consider the new divisor 126 and the new remainder 36,and apply the division lemma to get

126 = 36 x 3 + 18

We consider the new divisor 36 and the new remainder 18,and apply the division lemma to get

36 = 18 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 774 and 936 is 18

Notice that 18 = HCF(36,18) = HCF(126,36) = HCF(162,126) = HCF(774,162) = HCF(936,774) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 68 > 18, we apply the division lemma to 68 and 18, to get

68 = 18 x 3 + 14

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 14 and 18, to get

18 = 14 x 1 + 4

Step 3: We consider the new divisor 14 and the new remainder 4, and apply the division lemma to get

14 = 4 x 3 + 2

We consider the new divisor 4 and the new remainder 2, and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 18 and 68 is 2

Notice that 2 = HCF(4,2) = HCF(14,4) = HCF(18,14) = HCF(68,18) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 774, 936, 68 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 774, 936, 68?

Answer: HCF of 774, 936, 68 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 774, 936, 68 using Euclid's Algorithm?

Answer: For arbitrary numbers 774, 936, 68 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.