Highest Common Factor of 7749, 584 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7749, 584 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7749, 584 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7749, 584 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7749, 584 is 1.

HCF(7749, 584) = 1

HCF of 7749, 584 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7749, 584 is 1.

Highest Common Factor of 7749,584 using Euclid's algorithm

Highest Common Factor of 7749,584 is 1

Step 1: Since 7749 > 584, we apply the division lemma to 7749 and 584, to get

7749 = 584 x 13 + 157

Step 2: Since the reminder 584 ≠ 0, we apply division lemma to 157 and 584, to get

584 = 157 x 3 + 113

Step 3: We consider the new divisor 157 and the new remainder 113, and apply the division lemma to get

157 = 113 x 1 + 44

We consider the new divisor 113 and the new remainder 44,and apply the division lemma to get

113 = 44 x 2 + 25

We consider the new divisor 44 and the new remainder 25,and apply the division lemma to get

44 = 25 x 1 + 19

We consider the new divisor 25 and the new remainder 19,and apply the division lemma to get

25 = 19 x 1 + 6

We consider the new divisor 19 and the new remainder 6,and apply the division lemma to get

19 = 6 x 3 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7749 and 584 is 1

Notice that 1 = HCF(6,1) = HCF(19,6) = HCF(25,19) = HCF(44,25) = HCF(113,44) = HCF(157,113) = HCF(584,157) = HCF(7749,584) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7749, 584 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7749, 584?

Answer: HCF of 7749, 584 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7749, 584 using Euclid's Algorithm?

Answer: For arbitrary numbers 7749, 584 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.