Highest Common Factor of 7760, 5861 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7760, 5861 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7760, 5861 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7760, 5861 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7760, 5861 is 1.

HCF(7760, 5861) = 1

HCF of 7760, 5861 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7760, 5861 is 1.

Highest Common Factor of 7760,5861 using Euclid's algorithm

Highest Common Factor of 7760,5861 is 1

Step 1: Since 7760 > 5861, we apply the division lemma to 7760 and 5861, to get

7760 = 5861 x 1 + 1899

Step 2: Since the reminder 5861 ≠ 0, we apply division lemma to 1899 and 5861, to get

5861 = 1899 x 3 + 164

Step 3: We consider the new divisor 1899 and the new remainder 164, and apply the division lemma to get

1899 = 164 x 11 + 95

We consider the new divisor 164 and the new remainder 95,and apply the division lemma to get

164 = 95 x 1 + 69

We consider the new divisor 95 and the new remainder 69,and apply the division lemma to get

95 = 69 x 1 + 26

We consider the new divisor 69 and the new remainder 26,and apply the division lemma to get

69 = 26 x 2 + 17

We consider the new divisor 26 and the new remainder 17,and apply the division lemma to get

26 = 17 x 1 + 9

We consider the new divisor 17 and the new remainder 9,and apply the division lemma to get

17 = 9 x 1 + 8

We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get

9 = 8 x 1 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7760 and 5861 is 1

Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(17,9) = HCF(26,17) = HCF(69,26) = HCF(95,69) = HCF(164,95) = HCF(1899,164) = HCF(5861,1899) = HCF(7760,5861) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7760, 5861 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7760, 5861?

Answer: HCF of 7760, 5861 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7760, 5861 using Euclid's Algorithm?

Answer: For arbitrary numbers 7760, 5861 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.