Highest Common Factor of 7763, 4214 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7763, 4214 i.e. 7 the largest integer that leaves a remainder zero for all numbers.

HCF of 7763, 4214 is 7 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7763, 4214 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7763, 4214 is 7.

HCF(7763, 4214) = 7

HCF of 7763, 4214 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7763, 4214 is 7.

Highest Common Factor of 7763,4214 using Euclid's algorithm

Highest Common Factor of 7763,4214 is 7

Step 1: Since 7763 > 4214, we apply the division lemma to 7763 and 4214, to get

7763 = 4214 x 1 + 3549

Step 2: Since the reminder 4214 ≠ 0, we apply division lemma to 3549 and 4214, to get

4214 = 3549 x 1 + 665

Step 3: We consider the new divisor 3549 and the new remainder 665, and apply the division lemma to get

3549 = 665 x 5 + 224

We consider the new divisor 665 and the new remainder 224,and apply the division lemma to get

665 = 224 x 2 + 217

We consider the new divisor 224 and the new remainder 217,and apply the division lemma to get

224 = 217 x 1 + 7

We consider the new divisor 217 and the new remainder 7,and apply the division lemma to get

217 = 7 x 31 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 7763 and 4214 is 7

Notice that 7 = HCF(217,7) = HCF(224,217) = HCF(665,224) = HCF(3549,665) = HCF(4214,3549) = HCF(7763,4214) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7763, 4214 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7763, 4214?

Answer: HCF of 7763, 4214 is 7 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7763, 4214 using Euclid's Algorithm?

Answer: For arbitrary numbers 7763, 4214 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.