Highest Common Factor of 779, 8224 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 779, 8224 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 779, 8224 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 779, 8224 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 779, 8224 is 1.

HCF(779, 8224) = 1

HCF of 779, 8224 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 779, 8224 is 1.

Highest Common Factor of 779,8224 using Euclid's algorithm

Highest Common Factor of 779,8224 is 1

Step 1: Since 8224 > 779, we apply the division lemma to 8224 and 779, to get

8224 = 779 x 10 + 434

Step 2: Since the reminder 779 ≠ 0, we apply division lemma to 434 and 779, to get

779 = 434 x 1 + 345

Step 3: We consider the new divisor 434 and the new remainder 345, and apply the division lemma to get

434 = 345 x 1 + 89

We consider the new divisor 345 and the new remainder 89,and apply the division lemma to get

345 = 89 x 3 + 78

We consider the new divisor 89 and the new remainder 78,and apply the division lemma to get

89 = 78 x 1 + 11

We consider the new divisor 78 and the new remainder 11,and apply the division lemma to get

78 = 11 x 7 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 779 and 8224 is 1

Notice that 1 = HCF(11,1) = HCF(78,11) = HCF(89,78) = HCF(345,89) = HCF(434,345) = HCF(779,434) = HCF(8224,779) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 779, 8224 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 779, 8224?

Answer: HCF of 779, 8224 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 779, 8224 using Euclid's Algorithm?

Answer: For arbitrary numbers 779, 8224 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.