Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 780, 9069 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 780, 9069 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 780, 9069 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 780, 9069 is 3.
HCF(780, 9069) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 780, 9069 is 3.
Step 1: Since 9069 > 780, we apply the division lemma to 9069 and 780, to get
9069 = 780 x 11 + 489
Step 2: Since the reminder 780 ≠ 0, we apply division lemma to 489 and 780, to get
780 = 489 x 1 + 291
Step 3: We consider the new divisor 489 and the new remainder 291, and apply the division lemma to get
489 = 291 x 1 + 198
We consider the new divisor 291 and the new remainder 198,and apply the division lemma to get
291 = 198 x 1 + 93
We consider the new divisor 198 and the new remainder 93,and apply the division lemma to get
198 = 93 x 2 + 12
We consider the new divisor 93 and the new remainder 12,and apply the division lemma to get
93 = 12 x 7 + 9
We consider the new divisor 12 and the new remainder 9,and apply the division lemma to get
12 = 9 x 1 + 3
We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get
9 = 3 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 780 and 9069 is 3
Notice that 3 = HCF(9,3) = HCF(12,9) = HCF(93,12) = HCF(198,93) = HCF(291,198) = HCF(489,291) = HCF(780,489) = HCF(9069,780) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 780, 9069?
Answer: HCF of 780, 9069 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 780, 9069 using Euclid's Algorithm?
Answer: For arbitrary numbers 780, 9069 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.