Highest Common Factor of 780, 980 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 780, 980 i.e. 20 the largest integer that leaves a remainder zero for all numbers.

HCF of 780, 980 is 20 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 780, 980 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 780, 980 is 20.

HCF(780, 980) = 20

HCF of 780, 980 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 780, 980 is 20.

Highest Common Factor of 780,980 using Euclid's algorithm

Highest Common Factor of 780,980 is 20

Step 1: Since 980 > 780, we apply the division lemma to 980 and 780, to get

980 = 780 x 1 + 200

Step 2: Since the reminder 780 ≠ 0, we apply division lemma to 200 and 780, to get

780 = 200 x 3 + 180

Step 3: We consider the new divisor 200 and the new remainder 180, and apply the division lemma to get

200 = 180 x 1 + 20

We consider the new divisor 180 and the new remainder 20, and apply the division lemma to get

180 = 20 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 20, the HCF of 780 and 980 is 20

Notice that 20 = HCF(180,20) = HCF(200,180) = HCF(780,200) = HCF(980,780) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 780, 980 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 780, 980?

Answer: HCF of 780, 980 is 20 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 780, 980 using Euclid's Algorithm?

Answer: For arbitrary numbers 780, 980 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.