Highest Common Factor of 782, 103, 32, 508 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 782, 103, 32, 508 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 782, 103, 32, 508 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 782, 103, 32, 508 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 782, 103, 32, 508 is 1.

HCF(782, 103, 32, 508) = 1

HCF of 782, 103, 32, 508 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 782, 103, 32, 508 is 1.

Highest Common Factor of 782,103,32,508 using Euclid's algorithm

Highest Common Factor of 782,103,32,508 is 1

Step 1: Since 782 > 103, we apply the division lemma to 782 and 103, to get

782 = 103 x 7 + 61

Step 2: Since the reminder 103 ≠ 0, we apply division lemma to 61 and 103, to get

103 = 61 x 1 + 42

Step 3: We consider the new divisor 61 and the new remainder 42, and apply the division lemma to get

61 = 42 x 1 + 19

We consider the new divisor 42 and the new remainder 19,and apply the division lemma to get

42 = 19 x 2 + 4

We consider the new divisor 19 and the new remainder 4,and apply the division lemma to get

19 = 4 x 4 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 782 and 103 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(19,4) = HCF(42,19) = HCF(61,42) = HCF(103,61) = HCF(782,103) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 32 > 1, we apply the division lemma to 32 and 1, to get

32 = 1 x 32 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 32 is 1

Notice that 1 = HCF(32,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 508 > 1, we apply the division lemma to 508 and 1, to get

508 = 1 x 508 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 508 is 1

Notice that 1 = HCF(508,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 782, 103, 32, 508 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 782, 103, 32, 508?

Answer: HCF of 782, 103, 32, 508 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 782, 103, 32, 508 using Euclid's Algorithm?

Answer: For arbitrary numbers 782, 103, 32, 508 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.