Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 783, 870, 206 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 783, 870, 206 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 783, 870, 206 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 783, 870, 206 is 1.
HCF(783, 870, 206) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 783, 870, 206 is 1.
Step 1: Since 870 > 783, we apply the division lemma to 870 and 783, to get
870 = 783 x 1 + 87
Step 2: Since the reminder 783 ≠ 0, we apply division lemma to 87 and 783, to get
783 = 87 x 9 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 87, the HCF of 783 and 870 is 87
Notice that 87 = HCF(783,87) = HCF(870,783) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 206 > 87, we apply the division lemma to 206 and 87, to get
206 = 87 x 2 + 32
Step 2: Since the reminder 87 ≠ 0, we apply division lemma to 32 and 87, to get
87 = 32 x 2 + 23
Step 3: We consider the new divisor 32 and the new remainder 23, and apply the division lemma to get
32 = 23 x 1 + 9
We consider the new divisor 23 and the new remainder 9,and apply the division lemma to get
23 = 9 x 2 + 5
We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get
9 = 5 x 1 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 87 and 206 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(23,9) = HCF(32,23) = HCF(87,32) = HCF(206,87) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 783, 870, 206?
Answer: HCF of 783, 870, 206 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 783, 870, 206 using Euclid's Algorithm?
Answer: For arbitrary numbers 783, 870, 206 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.