Highest Common Factor of 784, 16167 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 784, 16167 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 784, 16167 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 784, 16167 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 784, 16167 is 1.

HCF(784, 16167) = 1

HCF of 784, 16167 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 784, 16167 is 1.

Highest Common Factor of 784,16167 using Euclid's algorithm

Highest Common Factor of 784,16167 is 1

Step 1: Since 16167 > 784, we apply the division lemma to 16167 and 784, to get

16167 = 784 x 20 + 487

Step 2: Since the reminder 784 ≠ 0, we apply division lemma to 487 and 784, to get

784 = 487 x 1 + 297

Step 3: We consider the new divisor 487 and the new remainder 297, and apply the division lemma to get

487 = 297 x 1 + 190

We consider the new divisor 297 and the new remainder 190,and apply the division lemma to get

297 = 190 x 1 + 107

We consider the new divisor 190 and the new remainder 107,and apply the division lemma to get

190 = 107 x 1 + 83

We consider the new divisor 107 and the new remainder 83,and apply the division lemma to get

107 = 83 x 1 + 24

We consider the new divisor 83 and the new remainder 24,and apply the division lemma to get

83 = 24 x 3 + 11

We consider the new divisor 24 and the new remainder 11,and apply the division lemma to get

24 = 11 x 2 + 2

We consider the new divisor 11 and the new remainder 2,and apply the division lemma to get

11 = 2 x 5 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 784 and 16167 is 1

Notice that 1 = HCF(2,1) = HCF(11,2) = HCF(24,11) = HCF(83,24) = HCF(107,83) = HCF(190,107) = HCF(297,190) = HCF(487,297) = HCF(784,487) = HCF(16167,784) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 784, 16167 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 784, 16167?

Answer: HCF of 784, 16167 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 784, 16167 using Euclid's Algorithm?

Answer: For arbitrary numbers 784, 16167 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.