Highest Common Factor of 7846, 6192 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7846, 6192 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 7846, 6192 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7846, 6192 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7846, 6192 is 2.

HCF(7846, 6192) = 2

HCF of 7846, 6192 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7846, 6192 is 2.

Highest Common Factor of 7846,6192 using Euclid's algorithm

Highest Common Factor of 7846,6192 is 2

Step 1: Since 7846 > 6192, we apply the division lemma to 7846 and 6192, to get

7846 = 6192 x 1 + 1654

Step 2: Since the reminder 6192 ≠ 0, we apply division lemma to 1654 and 6192, to get

6192 = 1654 x 3 + 1230

Step 3: We consider the new divisor 1654 and the new remainder 1230, and apply the division lemma to get

1654 = 1230 x 1 + 424

We consider the new divisor 1230 and the new remainder 424,and apply the division lemma to get

1230 = 424 x 2 + 382

We consider the new divisor 424 and the new remainder 382,and apply the division lemma to get

424 = 382 x 1 + 42

We consider the new divisor 382 and the new remainder 42,and apply the division lemma to get

382 = 42 x 9 + 4

We consider the new divisor 42 and the new remainder 4,and apply the division lemma to get

42 = 4 x 10 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 7846 and 6192 is 2

Notice that 2 = HCF(4,2) = HCF(42,4) = HCF(382,42) = HCF(424,382) = HCF(1230,424) = HCF(1654,1230) = HCF(6192,1654) = HCF(7846,6192) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7846, 6192 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7846, 6192?

Answer: HCF of 7846, 6192 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7846, 6192 using Euclid's Algorithm?

Answer: For arbitrary numbers 7846, 6192 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.