Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 785, 741, 776, 479 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 785, 741, 776, 479 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 785, 741, 776, 479 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 785, 741, 776, 479 is 1.
HCF(785, 741, 776, 479) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 785, 741, 776, 479 is 1.
Step 1: Since 785 > 741, we apply the division lemma to 785 and 741, to get
785 = 741 x 1 + 44
Step 2: Since the reminder 741 ≠ 0, we apply division lemma to 44 and 741, to get
741 = 44 x 16 + 37
Step 3: We consider the new divisor 44 and the new remainder 37, and apply the division lemma to get
44 = 37 x 1 + 7
We consider the new divisor 37 and the new remainder 7,and apply the division lemma to get
37 = 7 x 5 + 2
We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get
7 = 2 x 3 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 785 and 741 is 1
Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(37,7) = HCF(44,37) = HCF(741,44) = HCF(785,741) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 776 > 1, we apply the division lemma to 776 and 1, to get
776 = 1 x 776 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 776 is 1
Notice that 1 = HCF(776,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 479 > 1, we apply the division lemma to 479 and 1, to get
479 = 1 x 479 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 479 is 1
Notice that 1 = HCF(479,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 785, 741, 776, 479?
Answer: HCF of 785, 741, 776, 479 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 785, 741, 776, 479 using Euclid's Algorithm?
Answer: For arbitrary numbers 785, 741, 776, 479 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.