Highest Common Factor of 785, 741, 776, 479 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 785, 741, 776, 479 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 785, 741, 776, 479 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 785, 741, 776, 479 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 785, 741, 776, 479 is 1.

HCF(785, 741, 776, 479) = 1

HCF of 785, 741, 776, 479 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 785, 741, 776, 479 is 1.

Highest Common Factor of 785,741,776,479 using Euclid's algorithm

Highest Common Factor of 785,741,776,479 is 1

Step 1: Since 785 > 741, we apply the division lemma to 785 and 741, to get

785 = 741 x 1 + 44

Step 2: Since the reminder 741 ≠ 0, we apply division lemma to 44 and 741, to get

741 = 44 x 16 + 37

Step 3: We consider the new divisor 44 and the new remainder 37, and apply the division lemma to get

44 = 37 x 1 + 7

We consider the new divisor 37 and the new remainder 7,and apply the division lemma to get

37 = 7 x 5 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 785 and 741 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(37,7) = HCF(44,37) = HCF(741,44) = HCF(785,741) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 776 > 1, we apply the division lemma to 776 and 1, to get

776 = 1 x 776 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 776 is 1

Notice that 1 = HCF(776,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 479 > 1, we apply the division lemma to 479 and 1, to get

479 = 1 x 479 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 479 is 1

Notice that 1 = HCF(479,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 785, 741, 776, 479 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 785, 741, 776, 479?

Answer: HCF of 785, 741, 776, 479 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 785, 741, 776, 479 using Euclid's Algorithm?

Answer: For arbitrary numbers 785, 741, 776, 479 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.