Highest Common Factor of 7887, 6821 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7887, 6821 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7887, 6821 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7887, 6821 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7887, 6821 is 1.

HCF(7887, 6821) = 1

HCF of 7887, 6821 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7887, 6821 is 1.

Highest Common Factor of 7887,6821 using Euclid's algorithm

Highest Common Factor of 7887,6821 is 1

Step 1: Since 7887 > 6821, we apply the division lemma to 7887 and 6821, to get

7887 = 6821 x 1 + 1066

Step 2: Since the reminder 6821 ≠ 0, we apply division lemma to 1066 and 6821, to get

6821 = 1066 x 6 + 425

Step 3: We consider the new divisor 1066 and the new remainder 425, and apply the division lemma to get

1066 = 425 x 2 + 216

We consider the new divisor 425 and the new remainder 216,and apply the division lemma to get

425 = 216 x 1 + 209

We consider the new divisor 216 and the new remainder 209,and apply the division lemma to get

216 = 209 x 1 + 7

We consider the new divisor 209 and the new remainder 7,and apply the division lemma to get

209 = 7 x 29 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7887 and 6821 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(209,7) = HCF(216,209) = HCF(425,216) = HCF(1066,425) = HCF(6821,1066) = HCF(7887,6821) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7887, 6821 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7887, 6821?

Answer: HCF of 7887, 6821 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7887, 6821 using Euclid's Algorithm?

Answer: For arbitrary numbers 7887, 6821 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.