Highest Common Factor of 790, 255, 316, 926 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 790, 255, 316, 926 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 790, 255, 316, 926 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 790, 255, 316, 926 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 790, 255, 316, 926 is 1.

HCF(790, 255, 316, 926) = 1

HCF of 790, 255, 316, 926 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 790, 255, 316, 926 is 1.

Highest Common Factor of 790,255,316,926 using Euclid's algorithm

Highest Common Factor of 790,255,316,926 is 1

Step 1: Since 790 > 255, we apply the division lemma to 790 and 255, to get

790 = 255 x 3 + 25

Step 2: Since the reminder 255 ≠ 0, we apply division lemma to 25 and 255, to get

255 = 25 x 10 + 5

Step 3: We consider the new divisor 25 and the new remainder 5, and apply the division lemma to get

25 = 5 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 790 and 255 is 5

Notice that 5 = HCF(25,5) = HCF(255,25) = HCF(790,255) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 316 > 5, we apply the division lemma to 316 and 5, to get

316 = 5 x 63 + 1

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 1 and 5, to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 316 is 1

Notice that 1 = HCF(5,1) = HCF(316,5) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 926 > 1, we apply the division lemma to 926 and 1, to get

926 = 1 x 926 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 926 is 1

Notice that 1 = HCF(926,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 790, 255, 316, 926 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 790, 255, 316, 926?

Answer: HCF of 790, 255, 316, 926 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 790, 255, 316, 926 using Euclid's Algorithm?

Answer: For arbitrary numbers 790, 255, 316, 926 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.