Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 790, 268, 228, 492 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 790, 268, 228, 492 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 790, 268, 228, 492 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 790, 268, 228, 492 is 2.
HCF(790, 268, 228, 492) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 790, 268, 228, 492 is 2.
Step 1: Since 790 > 268, we apply the division lemma to 790 and 268, to get
790 = 268 x 2 + 254
Step 2: Since the reminder 268 ≠ 0, we apply division lemma to 254 and 268, to get
268 = 254 x 1 + 14
Step 3: We consider the new divisor 254 and the new remainder 14, and apply the division lemma to get
254 = 14 x 18 + 2
We consider the new divisor 14 and the new remainder 2, and apply the division lemma to get
14 = 2 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 790 and 268 is 2
Notice that 2 = HCF(14,2) = HCF(254,14) = HCF(268,254) = HCF(790,268) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 228 > 2, we apply the division lemma to 228 and 2, to get
228 = 2 x 114 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 228 is 2
Notice that 2 = HCF(228,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 492 > 2, we apply the division lemma to 492 and 2, to get
492 = 2 x 246 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 492 is 2
Notice that 2 = HCF(492,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 790, 268, 228, 492?
Answer: HCF of 790, 268, 228, 492 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 790, 268, 228, 492 using Euclid's Algorithm?
Answer: For arbitrary numbers 790, 268, 228, 492 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.