Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 791, 6538 i.e. 7 the largest integer that leaves a remainder zero for all numbers.
HCF of 791, 6538 is 7 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 791, 6538 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 791, 6538 is 7.
HCF(791, 6538) = 7
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 791, 6538 is 7.
Step 1: Since 6538 > 791, we apply the division lemma to 6538 and 791, to get
6538 = 791 x 8 + 210
Step 2: Since the reminder 791 ≠ 0, we apply division lemma to 210 and 791, to get
791 = 210 x 3 + 161
Step 3: We consider the new divisor 210 and the new remainder 161, and apply the division lemma to get
210 = 161 x 1 + 49
We consider the new divisor 161 and the new remainder 49,and apply the division lemma to get
161 = 49 x 3 + 14
We consider the new divisor 49 and the new remainder 14,and apply the division lemma to get
49 = 14 x 3 + 7
We consider the new divisor 14 and the new remainder 7,and apply the division lemma to get
14 = 7 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 791 and 6538 is 7
Notice that 7 = HCF(14,7) = HCF(49,14) = HCF(161,49) = HCF(210,161) = HCF(791,210) = HCF(6538,791) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 791, 6538?
Answer: HCF of 791, 6538 is 7 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 791, 6538 using Euclid's Algorithm?
Answer: For arbitrary numbers 791, 6538 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.