Highest Common Factor of 793, 37731 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 793, 37731 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 793, 37731 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 793, 37731 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 793, 37731 is 1.

HCF(793, 37731) = 1

HCF of 793, 37731 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 793, 37731 is 1.

Highest Common Factor of 793,37731 using Euclid's algorithm

Highest Common Factor of 793,37731 is 1

Step 1: Since 37731 > 793, we apply the division lemma to 37731 and 793, to get

37731 = 793 x 47 + 460

Step 2: Since the reminder 793 ≠ 0, we apply division lemma to 460 and 793, to get

793 = 460 x 1 + 333

Step 3: We consider the new divisor 460 and the new remainder 333, and apply the division lemma to get

460 = 333 x 1 + 127

We consider the new divisor 333 and the new remainder 127,and apply the division lemma to get

333 = 127 x 2 + 79

We consider the new divisor 127 and the new remainder 79,and apply the division lemma to get

127 = 79 x 1 + 48

We consider the new divisor 79 and the new remainder 48,and apply the division lemma to get

79 = 48 x 1 + 31

We consider the new divisor 48 and the new remainder 31,and apply the division lemma to get

48 = 31 x 1 + 17

We consider the new divisor 31 and the new remainder 17,and apply the division lemma to get

31 = 17 x 1 + 14

We consider the new divisor 17 and the new remainder 14,and apply the division lemma to get

17 = 14 x 1 + 3

We consider the new divisor 14 and the new remainder 3,and apply the division lemma to get

14 = 3 x 4 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 793 and 37731 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(14,3) = HCF(17,14) = HCF(31,17) = HCF(48,31) = HCF(79,48) = HCF(127,79) = HCF(333,127) = HCF(460,333) = HCF(793,460) = HCF(37731,793) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 793, 37731 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 793, 37731?

Answer: HCF of 793, 37731 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 793, 37731 using Euclid's Algorithm?

Answer: For arbitrary numbers 793, 37731 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.