Highest Common Factor of 794, 982, 533 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 794, 982, 533 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 794, 982, 533 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 794, 982, 533 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 794, 982, 533 is 1.

HCF(794, 982, 533) = 1

HCF of 794, 982, 533 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 794, 982, 533 is 1.

Highest Common Factor of 794,982,533 using Euclid's algorithm

Highest Common Factor of 794,982,533 is 1

Step 1: Since 982 > 794, we apply the division lemma to 982 and 794, to get

982 = 794 x 1 + 188

Step 2: Since the reminder 794 ≠ 0, we apply division lemma to 188 and 794, to get

794 = 188 x 4 + 42

Step 3: We consider the new divisor 188 and the new remainder 42, and apply the division lemma to get

188 = 42 x 4 + 20

We consider the new divisor 42 and the new remainder 20,and apply the division lemma to get

42 = 20 x 2 + 2

We consider the new divisor 20 and the new remainder 2,and apply the division lemma to get

20 = 2 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 794 and 982 is 2

Notice that 2 = HCF(20,2) = HCF(42,20) = HCF(188,42) = HCF(794,188) = HCF(982,794) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 533 > 2, we apply the division lemma to 533 and 2, to get

533 = 2 x 266 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 533 is 1

Notice that 1 = HCF(2,1) = HCF(533,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 794, 982, 533 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 794, 982, 533?

Answer: HCF of 794, 982, 533 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 794, 982, 533 using Euclid's Algorithm?

Answer: For arbitrary numbers 794, 982, 533 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.