Highest Common Factor of 795, 27325 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 795, 27325 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 795, 27325 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 795, 27325 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 795, 27325 is 5.

HCF(795, 27325) = 5

HCF of 795, 27325 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 795, 27325 is 5.

Highest Common Factor of 795,27325 using Euclid's algorithm

Highest Common Factor of 795,27325 is 5

Step 1: Since 27325 > 795, we apply the division lemma to 27325 and 795, to get

27325 = 795 x 34 + 295

Step 2: Since the reminder 795 ≠ 0, we apply division lemma to 295 and 795, to get

795 = 295 x 2 + 205

Step 3: We consider the new divisor 295 and the new remainder 205, and apply the division lemma to get

295 = 205 x 1 + 90

We consider the new divisor 205 and the new remainder 90,and apply the division lemma to get

205 = 90 x 2 + 25

We consider the new divisor 90 and the new remainder 25,and apply the division lemma to get

90 = 25 x 3 + 15

We consider the new divisor 25 and the new remainder 15,and apply the division lemma to get

25 = 15 x 1 + 10

We consider the new divisor 15 and the new remainder 10,and apply the division lemma to get

15 = 10 x 1 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 795 and 27325 is 5

Notice that 5 = HCF(10,5) = HCF(15,10) = HCF(25,15) = HCF(90,25) = HCF(205,90) = HCF(295,205) = HCF(795,295) = HCF(27325,795) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 795, 27325 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 795, 27325?

Answer: HCF of 795, 27325 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 795, 27325 using Euclid's Algorithm?

Answer: For arbitrary numbers 795, 27325 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.