Highest Common Factor of 795, 5331 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 795, 5331 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 795, 5331 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 795, 5331 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 795, 5331 is 3.

HCF(795, 5331) = 3

HCF of 795, 5331 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 795, 5331 is 3.

Highest Common Factor of 795,5331 using Euclid's algorithm

Highest Common Factor of 795,5331 is 3

Step 1: Since 5331 > 795, we apply the division lemma to 5331 and 795, to get

5331 = 795 x 6 + 561

Step 2: Since the reminder 795 ≠ 0, we apply division lemma to 561 and 795, to get

795 = 561 x 1 + 234

Step 3: We consider the new divisor 561 and the new remainder 234, and apply the division lemma to get

561 = 234 x 2 + 93

We consider the new divisor 234 and the new remainder 93,and apply the division lemma to get

234 = 93 x 2 + 48

We consider the new divisor 93 and the new remainder 48,and apply the division lemma to get

93 = 48 x 1 + 45

We consider the new divisor 48 and the new remainder 45,and apply the division lemma to get

48 = 45 x 1 + 3

We consider the new divisor 45 and the new remainder 3,and apply the division lemma to get

45 = 3 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 795 and 5331 is 3

Notice that 3 = HCF(45,3) = HCF(48,45) = HCF(93,48) = HCF(234,93) = HCF(561,234) = HCF(795,561) = HCF(5331,795) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 795, 5331 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 795, 5331?

Answer: HCF of 795, 5331 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 795, 5331 using Euclid's Algorithm?

Answer: For arbitrary numbers 795, 5331 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.