Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 796, 318, 938, 527 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 796, 318, 938, 527 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 796, 318, 938, 527 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 796, 318, 938, 527 is 1.
HCF(796, 318, 938, 527) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 796, 318, 938, 527 is 1.
Step 1: Since 796 > 318, we apply the division lemma to 796 and 318, to get
796 = 318 x 2 + 160
Step 2: Since the reminder 318 ≠ 0, we apply division lemma to 160 and 318, to get
318 = 160 x 1 + 158
Step 3: We consider the new divisor 160 and the new remainder 158, and apply the division lemma to get
160 = 158 x 1 + 2
We consider the new divisor 158 and the new remainder 2, and apply the division lemma to get
158 = 2 x 79 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 796 and 318 is 2
Notice that 2 = HCF(158,2) = HCF(160,158) = HCF(318,160) = HCF(796,318) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 938 > 2, we apply the division lemma to 938 and 2, to get
938 = 2 x 469 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 938 is 2
Notice that 2 = HCF(938,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 527 > 2, we apply the division lemma to 527 and 2, to get
527 = 2 x 263 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 527 is 1
Notice that 1 = HCF(2,1) = HCF(527,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 796, 318, 938, 527?
Answer: HCF of 796, 318, 938, 527 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 796, 318, 938, 527 using Euclid's Algorithm?
Answer: For arbitrary numbers 796, 318, 938, 527 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.