Highest Common Factor of 797, 482, 773, 29 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 797, 482, 773, 29 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 797, 482, 773, 29 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 797, 482, 773, 29 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 797, 482, 773, 29 is 1.

HCF(797, 482, 773, 29) = 1

HCF of 797, 482, 773, 29 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 797, 482, 773, 29 is 1.

Highest Common Factor of 797,482,773,29 using Euclid's algorithm

Highest Common Factor of 797,482,773,29 is 1

Step 1: Since 797 > 482, we apply the division lemma to 797 and 482, to get

797 = 482 x 1 + 315

Step 2: Since the reminder 482 ≠ 0, we apply division lemma to 315 and 482, to get

482 = 315 x 1 + 167

Step 3: We consider the new divisor 315 and the new remainder 167, and apply the division lemma to get

315 = 167 x 1 + 148

We consider the new divisor 167 and the new remainder 148,and apply the division lemma to get

167 = 148 x 1 + 19

We consider the new divisor 148 and the new remainder 19,and apply the division lemma to get

148 = 19 x 7 + 15

We consider the new divisor 19 and the new remainder 15,and apply the division lemma to get

19 = 15 x 1 + 4

We consider the new divisor 15 and the new remainder 4,and apply the division lemma to get

15 = 4 x 3 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 797 and 482 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(15,4) = HCF(19,15) = HCF(148,19) = HCF(167,148) = HCF(315,167) = HCF(482,315) = HCF(797,482) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 773 > 1, we apply the division lemma to 773 and 1, to get

773 = 1 x 773 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 773 is 1

Notice that 1 = HCF(773,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 29 > 1, we apply the division lemma to 29 and 1, to get

29 = 1 x 29 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 29 is 1

Notice that 1 = HCF(29,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 797, 482, 773, 29 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 797, 482, 773, 29?

Answer: HCF of 797, 482, 773, 29 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 797, 482, 773, 29 using Euclid's Algorithm?

Answer: For arbitrary numbers 797, 482, 773, 29 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.